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The methods that have come to be known as the Malkus–Howard–Busse (MHB)
and the Constantin–Doering–Hopf (CDH) techniques have, over the past few
decades, produced the few rigorous statements available about average properties
(e.g. momentum and heat transport) of turbulent flows governed by the Navier–
Stokes equation and the heat equation. In this, the first of two papers investigating
upper bounds on the heat transport in infinite-Prandtl-number convection, we show
that the methods of MHB and CDH yield equivalent optimal bounds: as at a
saddle – one from above, and one from below.

We also demonstrate that here, in contrast to earlier applications of the CDH
method, the simplest possible, one-parameter, ‘test function’ does not capture the
leading-order scaling associated with the fully optimal solution. We explore the
consequences of a two-parameter test function in modifying the scaling of the upper
bound. In the case of no-slip, the suggestion is that a hierarchy of test functions of
increasing complexity is required to yield the correct limiting behaviour.

1. Introduction
Theories of turbulence are classically based upon dimensional arguments – most

notably power spectrum scaling laws of Kolmogorov and Batchelor – whereas results
obtained from a rigorous derivation directly from the equations of fluid dynamics –
namely the Navier–Stokes equations – are few and far between.

Owing to the formidable difficulties of obtaining exact analytic solutions of the
Navier–Stokes equations, an alternative philosophy has arisen that makes use of a
subset of the full equations, which subset takes the form of simple, typically integral,
constraints (analogous to the use of energy conservation in elementary physics, in lieu
of solving the equations of motion). This produces predictions for mean properties,
as opposed to details of local structure, of fully developed turbulence. This approach
to studying turbulence is complementary to statistical and dimensional analyses. In
some cases the same minimalist approach admits a more general use of functional
analysis, in which case the selected subset of the governing equations may take various
forms beyond the integral possibilities noted above. The latter approach gives the first
rigorous proof of certain fundamental results about turbulence that have hitherto been
based solely on phenomenological arguments (see for example Doering & Gibbon
1995; Foias et al. 2001).
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Over the last forty or so years, analytical tools based on variational calculus
and on functional estimates have enabled researchers to bound transport properties
associated with turbulent flows. Two methods will be discussed below: historically the
first is the Malkus–Howard–Busse method (henceforth MHB), which was developed
and applied to classical fluid problems; the second is the Constantin–Doering–Hopf
method (henceforth CDH), which is similar to MHB but has the added benefit
of a solution obtained using simple ‘test functions’. In this paper we discuss the
application of these methods to bounding heat transport in the classical Boussinesq
convection problem with infinite Prandtl number. These methods will be shown to be
complementary and we discuss the implications for previous results.

Inspired by a hypothesis on maximizing heat transport (Malkus 1954a, b), the
original paper introducing the formal MHB theory was Howard (1963). Howard
established a formal upper bound for turbulent heat transport in a channel,
optimizing over a field of trial functions satisfying a subset of the physical constraints
imposed on a fluid by the full Navier–Stokes equations. Omitting the incompressibility
constraint, Howard obtained an explicit optimal solution with an asymptotic scaling
of Ra1/2. With incompressibility the Howard problem is more challenging, which led
Busse (1969) to develop his theory of multi-α optimal solutions. Busse proved that
the asymptotic solution of Howard’s problem with incompressibility has a structure
which grows in complexity as Ra increases by spawning an increasing hierarchy
of horizontal lengthscales. For no-slip boundaries, this boundary layer solution has
associated heat transport which scales like Ra1/2 while in Vitanov & Busse (1997) a
partial numerical treatment of the optimal equations suggests that the same scaling
applies to the same problem with free-slip boundaries. The fundamental nature of
the variational problems of MHB consists of the estimation of a rigorous upper
bound from below; therefore the method is not generally suited to easily extracting
elementary, rigorous, bounds for basic asymptotic scalings. For review articles on the
MHB method see Howard (1972) and Busse (1978).

The CDH method or ‘background method’ was introduced in the letter Doering
& Constantin (1992) where, in the spirit of MHB, upper bounds were sought for the
energy dissipation rate in plane Couette flow. The method uses a decomposition due
to Hopf (1941) of the velocity field into a ‘background’ field, which assumes the flow
boundary conditions, and a ‘fluctuation’ field with homogeneous boundary conditions.
In contrast to the MHB method, however, estimation of the rigorous upper bound
from above can be made using simple test functions in conjunction with elementary
functional estimates. For instance the original Howard problem of heat transport in
Boussinesq convection with incompressibility was addressed in Doering & Constantin
(1996) and simple estimates were used to infer the same Ra1/2 scaling of the heat
transport, for either no-slip or free-slip boundaries, but without the need for the elab-
orate structure of Busse’s multi-α solutions. The exact relation between the MHB and
CDH method was not apparent until Kerswell (1997, 1998) proved that the methods
constitute dual variational problems for both Couette flow and Boussinesq convection
at finite Prandtl number. Given this duality the methods could, for the aforementioned
problems, be viewed as a single theory expressed in different languages.

In recent years a full numerical calculation of the optimal solution to the CDH
problem in Couette flow – Plasting & Kerswell (2003) – has validated Busse’s
asymptotic proposal of a multi-α solution. Additionally a number of numerical
procedures for calculating semi-optimal test function bounds in the CDH formulation
have been developed, notably Nicodemus, Grossmann & Holthaus (1998), Otero
(2002) and Otero et al. (2004). In this paper we follow Otero’s solution technique.
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The focus of this paper is the application of MHB and CDH methods to Boussinesq
convection at infinite Prandtl number. In that case the momentum equation is a linear,
diagnostic, equation for u in terms of T and can thus be imposed as a stronger,
pointwise, constraint instead of a purely integral constraint. We discuss both no-slip
and free-slip boundary conditions.

Following the programme established by Kerswell, we first prove that the methods
are also dual for this particular problem, and then calculate semi-optimal bounds using
the CDH method utilizing a two-parameter family of test functions. We begin by
rederiving each method as in the original literature and then proceed to demonstrate
their duality.

On the basis of this duality, there emerges an apparent anomaly on comparing
the results for (i) the no-slip case in which the MHB method was applied by Chan
(1971) and a solution found similar to Busse’s multi-k solutions with asymptotic Ra1/3

dependence of the heat flux; and (ii) the same problem addressed by means of the
CDH method by Doering & Constantin (2001) resulting in a rigorous bound on the
optimal asymptotic scaling of the form Ra2/5.† The issue at hand is how the gap
between exponents of 1/3 and 2/5 is closed; either or both might need refinement
in order to saturate the optimal scaling behaviour. For previous work in the case of
free-slip boundaries see Vitanov (1998) and later papers, a further examination of
which appears in Part 2 of this paper (Ierley, Kerswell & Plasting 2005).

1.1. Derivation

We consider Boussinesq convection between plates at fixed temperature, with the
temperature drop between plates �T = Tbot − Ttop positive so that the fluid layer
is convectively unstable. All material properties are assumed constant: kinematic
viscosity ν, thermometric conductivity κ , thermal expansion α and mean density
ρ. Without loss of generality all fields are taken to be periodic in the horizontal
direction, as the geometry is plane-parallel. The non-dimensionalized Rayleigh–Bénard
equations assume the form

1

σ

(
∂u
∂t

+ u · ∇u
)

+ ∇p = ∇2u + Ra T ẑ,

∂T

∂t
+ u · ∇T = ∇2T ,

∇ · u = 0,

 (1.1)

where velocity is measured in units of κ/d; lengths by d; time by d2/κ; pressure by
ρ(νκ/d2); and temperatures by �T . The dimensionless parameters σ and Ra in (1.1)
are, respectively, the Prandtl number and the Rayleigh number:

σ =
ν

κ
, Ra =

αg�T d3

κν
.

We study the case where the Prandtl number is infinite (σ = ∞), a rigorous justification
of which limit has recently been given in Wang (2004). The velocity equation in this

† This seeming disparity was heightened still further on Constantin & Doering (1999) finding
that the incorporation of extra information into CDH method yields an upper bound of the form
Ra1/3(log Ra)2/3. Subsequently Yan (2004) followed with a proof that Nu < c Ra4/11. Both of these
results are not to be directly compared to the present communication because they use additional
estimates on derivatives of the fields, which cannot be derived within the standard CDH method.
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Figure 1. Momentum equation and boundary conditions for infinite-Prandtl-number
convection.

limit is linear and has no explicit time-dependence:

∇2u + Ra T ẑ = ∇p. (1.2)

In the variational calculation to follow, equation (1.2) will be employed as a pointwise
constraint in space that couples u to T . Inclusion of this constraint means the
variational problem enriches the original Howard problem for arbitrary-Prandtl-
number convection. In consequence, a scaling exponent less than 1/2 is achievable
for Nu, the Nusselt number.

Two boundary conditions on the velocity field will be used: (i) no-slip conditions
to describe a solid boundary

u = 0 at z = 0 and 1, (1.3)

which, owing to incompressibility, can be equivalently written as w = wz = 0 at
z = 0 and 1; (ii) free-slip (or slip) conditions, which describe an undisplaced free
surface

w =0; uz = vz =0 at z =0 and 1,

and incompressibility in this case then implies that one can write w = wzz = 0 at
z = 0 and 1. For a full discussion of the derivation of the Rayleigh–Bénard equations
and of the boundary conditions see Chandrasekhar (1961).

In order to eliminate pressure, the momentum equation (1.2) is written as a fourth-
order equation for w in terms of T , as follows:

∇4w + Ra∇2
H
T = 0. (1.4)

This can be seen by taking ∇ · (1.2) and ∇2[(1.2) · ẑ], and noticing that u and v then
depend only on the pressure. The horizontal Laplacian is defined as ∇2

H
= ∂2

x + ∂2
y and

the two types of boundary conditions are, again: no-slip

w =wz = 0 at z = 0 and 1; (1.5)

and free-slip

w = wzz = 0 at z = 0 and 1. (1.6)

The associated dimensionless boundary conditions on T are: T (0) = 1 and T (1) = 0.
See figure 1 for a summary of the geometry and boundary conditions.

Now let us turn to the heat equation, denoted by H:

H :=
∂T

∂t
+ u · ∇T − ∇2T . (1.7)
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This can be written in terms of the conductive heat flux ( j := −∇T ) and the convective
heat flux (J := uT ) as

∂T

∂t
= − ∇ · ( j + J).

In a purely conductive state (when u = 0) the heat flux between the parallel plates
is simply 〈 ẑ · (−∇T )〉 = − T (1) + T (0) = 1, whereas in general the heat flux between
the plates is 〈 ẑ · ( j + J)〉 =1 + 〈wT 〉. Regarding notation, we use (·), 〈·〉 and ‖·‖2 as
horizontal, volume and time, and L2 averages respectively, that is

(·) = lim
Lx,y→∞

1

4LxLy

∫ Lx

−Lx

dx

∫ Ly

−Ly

dy(·),

〈·〉 = lim
τ→∞

1

τ

∫ τ

0

dt

∫ 1/2

−1/2

(·) dz, ‖f ‖2 = 〈|f |2〉.

The dimensionless heat flux, or Nusselt number (hereafter denoted Nu), is defined
as the ratio of the long-time average of the total heat flux to the conductive heat flux
between the plates

Nu = 1 + 〈wT 〉. (1.8)

A second expression for Nu can be deduced from the global entropy flux balance
〈T H〉 = 0

‖∇T ‖2 = 1 + 〈wT 〉, (1.9)

where, on appeal to the temperature maximum principle for the advection–diffusion
equation (which bounds the temperature field by its value on the boundary: 0 � T �
1; e.g. Protter & Weinberger 1984), the long-time average eliminates the contribution

from d(
∫ 1/2

−1/2
T 2 dz)/dt . The net result is

Nu = ‖∇T ‖2. (1.10)

The MHB and CDH bounding methods will be based entirely on the information
in (1.8), (1.10) and the momentum constraint (1.4). In the next section we derive
the MHB and CDH variational problems in accord with the derivations in Chan
(1971) and Doering & Constantin (2001) respectively. Note that there is no preferred
horizontal direction for the variational solutions since horizontal derivatives only
appear in the combination ∇2

H
in equation (1.4), (1.8), and (1.10).

2. Two bounding methods
2.1. The MHB method

The MHB method is based upon the assumption of statistical stationarity for all
horizontal averages. So in particular we have dT̄ /dt = 0 and 〈wT 〉 is time-independent.
We use the Reynolds decomposition of the temperature field into a mean and

fluctuating part, namely T (x, t) = T̄ (z) + θ̂(x, t). Periodicity and incompressibility
imply that w̄ =0.

Under the mean-fluctuation decomposition the heat equation (1.7) becomes

H :=
∂θ

∂t
+ wT̄z + u · ∇θ̂ − T̄zz − ∇2θ̂ = 0. (2.1)
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Two pieces of information are used to derive the variational functional: namely H = 0
and 〈T H〉 = 0, which are respectively

T̄z = wθ̂ − 〈wθ̂〉 − 1, ‖T̄z‖2 + T̄z|z=0 = −‖∇θ̂‖2; (2.2)

and can be combined to deduce the so-called second power integral

‖∇θ̂‖2 + ‖wθ̂ − 〈wθ̂〉‖2 = 〈wθ̂〉. (2.3)

Taking the ratio of terms in the previous balance we arrive at the identity

1 =
〈wθ̂〉 − ‖∇θ̂‖2

‖wθ̂ − 〈wθ̂〉‖2
,

which, when multiplied by 〈wθ̂〉, produces a homogeneous functional

F =
〈wθ̂〉2 − 〈wθ̂〉‖∇θ̂‖2

‖wθ̂ − 〈wθ̂〉‖2
, (2.4)

the supremum of which provides an upper bound on the Nusselt number,
Nu − 1 � supF . The maximization of F is performed over steady fields that satisfy
the momentum constraint (1.4), the specific boundary conditions, and the power

constraint in equation (2.3), which is imposed after the fact by normalizing 〈wθ̂〉 =F .
This is essentially the homogeneous functional that Chan (1971) maximizes.

In fact, Chan solved the Euler–Lagrange equations of the following Lagrangian
functional:

G = F −
〈
q(x)

(
∇4w + Ra∇2

H
θ̂
)〉

, (2.5)

where q(x) is a Lagrange multiplier imposing the pointwise momentum constraint
in equation (1.4). This is the functional in equation (25) of Chan (1971) (save for

the normalization 〈wθ̂〉 =1). Taking variations of this functional with respect to w

and θ̂ and substituting in ‖∇θ̂‖2 = 〈wθ̂〉 − ‖wθ̂ − 〈wθ̂〉‖2 we deduce the following
Euler–Lagrange equations:

θ̂ [〈wθ̂〉 + ‖wθ̂ − 〈wθ̂〉‖2] − 2F θ̂[wθ̂ − 〈wθ̂〉] − ∇4q ‖wθ̂ − 〈wθ̂〉‖2 = 0,

2∇2θ̂ 〈wθ̂〉+w[〈wθ̂〉+‖wθ̂ −〈wθ̂〉‖2]−2Fw[wθ̂ −〈wθ̂〉]−Ra∇2
H
q ‖wθ̂ −〈wθ̂〉‖2 =0.

(2.6)

If we normalize w and θ̂ as Chan does, namely w → 〈wθ̂〉−1/2Ra−1/2w and θ̂ →
〈wθ̂〉−1/2Ra1/2θ̂ so that 〈wθ̂〉 → 1 then equations (2.6) become exactly the Euler–
Lagrange equations (27) in Chan (1971).

2.2. CDH method

By contrast, the CDH method relies on a decomposition of the temperature field
originally due to Hopf (1941), into background and fluctuation parts

T (x, t) = τ (z) + θ(x, t), (2.7)

where the background field takes on the temperature boundary conditions: τ (0) = 1
and τ (1) = 0 but is otherwise arbitrary, and θ satisfies Dirichlet boundary conditions.
The fluctuation field θ is not necessarily a zero-mean variable, hence to distinguish
these variables from the equivalent MHB set, we do not use hatted variables at this
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stage. Substituting (2.7) into (1.7) gives

∂θ

∂t
+ u · ∇θ = ∇2θ + τ ′′ − wτ ′. (2.8)

Multiplying this equation by θ produces

0 = −‖∇θ‖2 + 〈θτ ′′ − wθτ ′〉 (2.9)

(as above the time derivative drops out). Adding b × (2.9) to the identity
‖∇T ‖2 = ‖∇θ‖2 + ‖τ ′‖2 − 2〈θτ ′′〉 then yields

‖∇T ‖2 = ‖τ ′‖2 − Gτ,b(w, θ) (2.10)

where G = 〈(b − 1)‖∇θ‖2 − (b − 2)θτ ′′ + bwθτ ′〉.†
Using expression (1.10) the following upper bound on Nu emerges:

Nu � ‖τ ′‖2 − inf
w,θ

Gτ,b(w, θ) (2.11)

where the infimum is attained by steady fields.
The task of calculating the upper bound on Nu in equation (2.11) is greatly

simplified by reducing the problem to one just involving w and the zero-mean field

θ̂ ≡ θ − θ̄ . In this way we can make connection to the variables (w, θ̂) in the MHB
problem. Consider the functional

L = G −
〈
q(x)

(
∇4w + Ra∇2

H
θ
)〉

where the Lagrange multiplier q(x) is used to impose equation (1.4) and satisfies
the natural boundary conditions for the problem, namely those satisfied by w. The
infimum over θ is attained by setting the θ variation to zero:

δL

δθ
= −2(b − 1)∇2θ − (b − 2)τ ′′ + bwτ ′ − Ra∇2

H
q = 0.

Taking a horizontal average of this equation, and noting periodicity and the boundary
conditions, we find that the mean part of the optimal fluctuation field is given by

2(b − 1)θ̄ ′′ + (b − 2)τ ′′ = 0, (2.12)

which can be integrated twice to obtain

θ̄ = − (b − 2)

2(b − 1)
[τ + z − 1]. (2.13)

Therefore by setting θ̂ = θ − θ̄ we can restate problem (2.11) as an optimization over
zero-mean fields, namely

Nu − 1 �
b2

4(b − 1)
(‖τ ′‖2 − 1), (2.14)

subject to the spectral constraint G̃τ,b(w, θ̂ ) = (b − 1)‖∇θ̂‖2 + b〈wθ̂τ ′〉 � 0. Here (w, θ̂ )
satisfy equation (1.4) and the specific boundary conditions. It is clear that if G̃τ,b is

† The parameter b is known in the field as the balance parameter and was originally introduced
into the formulation of the CDH upper-bound problem for plane Couette flow in Nicodemus,
Grossmann & Holthaus (1997); prior to this the special case b = 2 had only been considered.
The extra leverage provided by the balance parameter is what enabled Kerswell (1997, 1998) to
prove that the CDH and MHB theories applied to plane Couette flow constituted dual variational
problems. b also plays a crucial role in proving the duality for the problem studied here.
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to have a minimum value then b > 1. The term ‘spectral constraint’ is used purely
for historical reasons and is related to the fact that non-negativity of the quadratic
form G̃τ,b can be interpreted as an eigenvalue problem. The Lagrangian associated
with this simplified variational problem is

L̃ =
b2

4(b − 1)
(‖τ ′‖2 − 1) − G̃τ,b(w, θ̂) −

〈
q(x)

(
∇4w + Ra∇2

H
θ̂
)〉

. (2.15)

The form of this variational problem is similar to that in the Couette flow variational
problem solved in Plasting & Kerswell (2003), save that a pointwise momentum
constraint is here imposed.

2.3. Unifying the CDH and MHB methods

We have seen that the MHB variational method seeks the supremum of a
homogeneous functional – equation (2.4) – in order to bound Nu and therefore

any specific point (w, θ̂) yields an underestimate of the upper bound, whereas the
CDH method seeks to minimize a functional – namely ‖τ ′2‖ – subject to a spectral
constraint and therefore any arbitrary τ found to satisfy the spectral constraint yields
an upper estimate of the optimal upper bound. Such a characterization makes it
unclear how the methods might intersect.

Their correspondence can be established by showing that the optimal equation
for each method derives from a single Lagrangian functional. As noted earlier,
Kerswell (2001) proved this duality in the case of MHB and CDH methods applied
to arbitrary-Prandtl-number convection. The following proof is for the specific case
of σ = ∞.

Lemma 1. The CDH and MHB methods are dual variational problems estimating
the highest stationary point, that with highest associated heat flux, of the following
functional:

N := ‖∇T ‖2 − b〈θH〉 −
〈
q(x)

(
∇4w + Ra∇2

H
T

)〉
(2.16)

where T = τ (z) + θ(x, t), and H is the heat equation:

H :=
∂θ

∂t
+ u · ∇θ − ∇2θ + wτ ′ − τ ′′ = 0.

Proof. We begin the proof by deriving all of the variational derivatives of the
functional N , which can be written in terms of τ and θ:

N (τ, w, θ, b, q) = ‖τ ′‖2 − 〈(b − 1)|∇θ |2 − (b − 2)θτ ′′ + bθwτ ′〉

−
〈
q(x)

(
∇4w + Ra∇2

H
θ
)〉

. (2.17)

Variational equations for τ (z), θ(x), w(x), q(x), as well as the mean and zero-mean
parts of θ , are given by

δN

δτ
= −2τ ′′ + (b − 2)θ̄ ′′ + b(wθ )′ = 0, (2.18)

δN

δθ
= 2(b − 1)∇2θ + (b − 2)τ ′′ − bwτ ′ − Ra∇2

H
q = 0,

δN

δw
= −bθτ ′ − ∇4q = 0, (2.19)
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δN

δq
= ∇4w + Ra∇2

H
θ = 0, (2.20)

δN

δθ
= 0


δN

δθ̄
= 2(b − 1)θ̄ ′′ + (b − 2)τ ′′ = 0,

δN

δθ̂
= 2(b − 1)∇2θ̂ − bwτ ′ − Ra∇2

H
q = 0.

(2.21)

In the following discussion the optimal fields (the solutions of the Euler–Lagrange
equations) are denoted by a subscript opt. It will be demonstrated that both of the
techniques can be derived by solving different subsets of the variational equations
and rewriting the remaining equations appropriately.

Case 1: CDH method

Solving δN/δ θ̄ =0 yields an expression for the mean of the optimal θ:

θ̄opt = − b − 2

2(b − 1)
[τ + z − 1].

Substituting this into N we have

N̆ (τ, w, θ̂, b, q) − 1 = N (τ, w, θ̄opt + θ̂ , b, q) − 1

=
b2

4(b − 1)
(‖τ ′‖2 − 1) − 〈(b − 1)|∇θ̂ |2 + bwθ̂τ ′〉 −

〈
q(x)

(
∇4w + Ra∇2

H
θ̂
)〉

. (2.22)

This is the Lagrangian functional shown in (2.15).

Case 2: MHB method

Solving δN/δ θ̄ = 0 and δN/δτ = 0 simultaneously allows us to deduce equations for
the optimal background field and the mean of the fluctuation field in terms of the

zero-mean fluctuation field θ̂ and w, respectively:

τ ′
opt =

2(b − 1)

b
[wθ̂ − 〈wθ̂〉] − 1, θ̄ ′

opt = −b − 2

b
[wθ̂ − 〈wθ̂〉]. (2.23)

Substituting these expressions into N followed by some algebra yields

N̊ (w, θ̂, b, q) − 1 = N (τopt , w, θ̄opt + θ̂ , b, q) − 1

=〈wθ̂〉+(b − 1){〈wθ̂〉−‖wθ̂ −〈wθ̂〉‖2−‖∇θ̂‖2}−
〈
q(x)

(
∇4w+Ra∇2

H
θ̂
)〉

. (2.24)

In this context (b − 1) is a Lagrange multiplier imposing the second-power integral
balance (2.3) while q(x) imposes the momentum constraint. The remaining variational

equations for w and θ̂ are

δN

δθ̂
= w + (b − 1){w − 2w[wθ̂ − 〈wθ̂〉] + 2∇2θ̂} − Ra∇2

H
q = 0, (2.25)

δN

δw
= θ̂ + (b − 1){θ̂ − 2θ̂[wθ̂ − 〈wθ̂〉]} − ∇4q = 0. (2.26)

In order to obtain a value for the optimal b we calculate 〈θ̂(δN/δθ̂ )〉 = 0 and
〈w(δN/δw)〉 = 0, which are respectively

(2 − b)〈wθ̂〉 − Ra
〈(

∇2
H
q
)
θ̂
〉

= 0,
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and

(2 − b)〈wθ̂〉 + 2(b − 1)‖∇θ̂‖2 − 〈(∇4q)w〉 = 0.

Given that 〈(∇4q)w〉 = 〈q(∇4w)〉 = 〈q(−Ra∇2
H
θ̂〉 these equations can be added to give

b =
‖∇θ̂‖2 − 2〈wθ̂〉
‖∇θ̂‖2 − 〈wθ̂〉

, (2.27)

and the second-power integral can be employed to deduce a simple expression for
(b − 1), which may be easily inserted back into equations (2.25) and (2.26):

b − 1 =
〈wθ̂〉

‖wθ̂ − 〈wθ̂〉‖2
. (2.28)

After minor simplifications the w and θ̂ variations turn out to be

θ̂ [〈wθ̂〉 + ‖wθ̂ − 〈wθ̂〉‖2] − 2θ̂〈wθ̂〉[wθ̂ − 〈wθ̂〉] − (∇4q) ‖wθ̂ − 〈wθ̂〉‖2 = 0, (2.29)

and

2(∇2θ̂)〈wθ̂〉 + w[〈wθ̂〉 + ‖wθ̂ − 〈wθ̂〉‖2] − 2w〈wθ̂〉[wθ̂ − 〈wθ̂〉]

− Ra
(
∇2

H
q
)

‖wθ̂ − 〈wθ̂〉‖2 = 0. (2.30)

If we replace each
〈
wθ̂

〉
multiplying (wθ̂ − 〈wθ̂〉) by the functional F in (2.4), then

these equations are exactly the Euler–Lagrange equations derived in Chan (1971).
As a final comment note that, for the two problems to intersect, the MHB

problem must additionally satisfy the spectral constraint to ensure that the field of
highest heat flux is selected. Indeed, in general equations (2.29) and (2.30) will have
multiple solutions, only one of which will be a global maximum for F . Note also
that equation (2.28) implies that (b − 1) > 0, which is consistent with the spectral
constraint. This concludes the proof of duality. �

Next we seek to close the gap between the putative optimal scaling exponent of
1/3 and the original conservative-bound exponent of 2/5.

3. Conservative upper bounds
In previous studies the scaling exponents of CDH upper bounds have been saturated

by the simplest possible test function, namely a single-parameter family of functions
with constant-slope boundary layer and zero-slope interior. Those cases utilizing more
complicated test functions yielded only an improvement in numerical prefactors. The
rationale behind using simple boundary-layered test functions is that in order to prove
that the positive definite term in the spectral constraint – 〈|∇θ |2〉 – is large enough to
balance the sign-indefinite term – 2〈wθτ ′〉 – then τ ′ must be non-zero only in a small
region close to the wall, where w and θ must vanish, thus limiting the sign-indefinite
term.

In infinite-Prandtl-number convection these simple test functions have been used
to prove conservative estimates of the form Nu < c Ra2/5 both analytically, by
Doering & Constantin (2001), and numerically, by Otero (2002). Thus, given Chan’s
result that the dual MHB theory leads to an upper bound of the form Nu < c Ra1/3,
it is clear that the single-parameter functions do not saturate the optimal scaling.
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z = 1

z = 0
Flat interior Variable interior

(a) (b)

Figure 2. Enlarged set of test functions for the Lagrange multiplier τ (z): (a) from Otero
(2002) (b) two-parameter form used here.

We therefore extend this class of τ -test functions to a two-parameter family having a
constant-gradient boundary layer and constant, but arbitrary, interior slope. We are
guided in our choice of test functions by observing that the optimal solutions to this
problem (appearing in Part 2 of this paper) have overshoot, that is, regions where the
optimal profile is stably stratified, just on the edge of the boundary layer.

The numerical details of a conservative estimate have also been described in detail
in § 4 of Otero et al. (2004) for the problem of convection in a porous medium. The
only numerical subtlety is in the treatment of the spectral constraint. Optimization of
the upper bound over the balance parameter b can be shown not to affect the scaling
exponent (see Plasting 2004), hence we set b = 2.

The two-parameter family of test functions, which we write in terms of τ ′ only, is

τ ′ =

{
p − 1 + p

2δ
for z ∈ [0, δ],

p for z ∈ [δ, 1/2].
(3.1)

This form reflects the boundary conditions on τ , namely τ (0) = 1 and τ (1) = 0, which

imply that
∫ 1

0
τ ′ dz = − 1. The interior slope is p; the test functions are odd about

the mid-channel at z = 1/2; and the boundary layer has thickness δ. Figure 2 depicts
the enlargement of the class of test functions from those used in Otero (2002) (figure
2a) to the two-parameter form used here (figure 2b).

For the test functions described in equation (3.1) the value of the upper bound,

Nu �
∫ 1

0
τ ′2, is

Nu � N (δ, p) :=
(1 + p)2

2δ
− p(2 + p). (3.2)

The spectral constraint is

Q = 〈|∇θ |2〉 + 2〈wθτ ′〉 � 0 for any w, θ satisfying (1.4),

where w and θ must satisfy either the no-slip or free-slip boundary conditions and are
solutions of the momentum constraint ∇4w + Ra∇2

H
θ = 0 (where ∇2 is the Laplacian

operator and the horizontal Laplacian is denoted ∇2
H

= ∂2
x +∂2

y ). This spectral constraint

is equivalent to insisting that the highest eigenvalue, henceforth denoted µ0, of the
following eigenvalue problem is negative semi-definite:

2∇2θ − 2wτ ′ − Ra∇2
H
q = µθ,

∇4q + 2θτ ′ = 0,

∇4w + Ra∇2
H
θ = 0,

 (3.3)

where the q(x) is a Lagrange multiplier field for the momentum constraint satisfying
the same boundary conditions as w. We call the optimal solution within the restricted
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set of test functions a ‘semi-optimal’ solution to this variation problem, since the form
of the background profile is restricted to a two-parameter family of functions. The
intent of the restriction is to facilitate the determination of a bound either analytically
or, failing that, with an elementary numerical treatment.

We expand the fields w, θ and q in a Fourier series as

w(x, y, z) =
∑

α

eiα·xwα(z)

where α2 = |α2|. Since (3.3) is homogeneous in x and y the spectral constraint depends
only on the magnitude of the wave-vector, namely α, and not its direction. The spectral
constraint is imposed on a mode-by-mode basis because

Q � 0 ∀w, θ ⇐⇒ Qα � 0 ∀α ∈ � and wα, θα satisfying (1.4), (3.4)

where Qα is just Q restricted to the horizontal wavenumber α. For each wavenumber
α there is a convex set of background profiles characterized by µ0

α(τ ) � 0 and a
corresponding isospectral surface µ0

α(τ ) = 0. Owing to this convexity property we
need only consider the surface µ0 = 0, and seek the minimum Nusselt number N (δ, p)
on it. Assuming this isospectral surface is smooth, then the minimum over (δ, p) can
be computed with a continuation method. The eigenvalue problem is now

2(D2 − α2)θ − 2wτ ′ + Raα2q = µαθ,

(D2 − α2)2q + 2θτ ′ = 0,

(D2 − α2)2w − Raα2θ = 0 ,

 (3.5)

where D= d/dz. For each α there exists a unique largest δ, say δα , for which µα = 0
and N (δ, p) is a minimum. The optimal δ, denoted δ∗, is then the minimum over all
these δα .

Our intention is to fix both Ra and p in order to find δ∗. Since N (δ, p) is monotonic
in δ it suffices to find the maximum δ consistent with spectral constraint µ0

α(τ ) � 0,
and for which there exists an α with µ0

α(τ ) = 0. A further minimization of N over the
slope parameter p then yields the semi-optimal estimate for this value of Ra.

Finding δα involves solving system (3.5) with µα =0. The optimal boundary layer
thickness is

δ∗ = min
α<α+

δα, (3.6)

where α+ is the cut-off wavenumber above which the conduction solution τ ′ = − 1 is
stable. Owing to the monotonicity of N with δ an equivalent statement is

N1(p) = max
α<α+

N (δα, p). (3.7)

Noting that δα is an implicit function of p the next step in the optimization is
a minimization over the interior gradient. The end result is a semi-optimal upper
bound on Nu

Nu � min
p∈�

max
α<α+

N (δα, p). (3.8)

Since τ ′ is piecewise constant, system (3.5) can be implemented as a condition
that the determinant of a 10 × 10 matrix vanishes. The elements in this matrix
are derived from the expansion of the eigenfunctions in complex exponentials. The
following subsection describes the analytical solution and the matching and symmetry
conditions which, once imposed, lead to the relevant determinant.



Infinite-Prandtl-number convection. Part 1 355
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Matching

Wall

Region I

Region II

Figure 3. Regions of constant τ ′ for the two-parameter test functions.

3.1. Solution technique

Within the regions of constant τ ′ – pictured in figure 3 – system (3.5) is a set of
linear, constant-coefficient, differential equations soluble by complex exponentials.
The system is equivalent to a tenth-order equation in w and therefore the solution
will be a linear combination of ten exponentials. Substituting

[θ, w, q] = [a, b, c] eβαz

we find that the auxiliary equation has two real roots each of multiplicity two (β = ±1),
and six complex roots satisfying (β2 − 1)3 = 2Raτ ′/α4.

Note that: (i) for the repeated roots the particular solutions have

θ(z) = 0 and q(z) =
2τ ′

Raα2
w(z), (3.9)

whereas (ii) for the complex roots the particular solutions have

θ(z) =
α2(β2 − 1)2

Ra
w(z) and q(z) = − 2τ ′

Raα2
w(z). (3.10)

Building in boundary conditions and mid-channel symmetry† reduces the number
of unknown coefficients in the problem by half. As an illustration the Region II
solution, identical for no-slip and free-slip boundaries, is

w2 = c6 cosh(β6αz̃) + c7 cosh(β7αz̃) + c8 cosh(β8αz̃)

+ c9 cosh(αz̃) + c10z̃ sinh(αz̃)

(where z̃ = z − 1/2) and the Region I solution for free-slip boundaries is

w1 = c1 sinh(β1αz) + c2 sinh(β2αz) + c3 sinh(β3αz)

+ c4 sinh(αz) + c5z cosh(αz)

(a similar form is obtained for no-slip). The complex roots β1, β2, β3 for Region I and
β6, β7, β8 for Region II are computed using the following formulae for j = 1, 2, 3:

β2 − 1 =



(
2|τ ′|Ra

α4

)1/3

ei(2j+1)π/3 for τ ′ < 0,

(
2|τ ′|Ra

α4

)1/3

ei(2j )π/3 for τ ′ > 0.

(3.11)

† For a discussion of symmetry of the ground-state eigenfunction and why even symmetry is
more potent than odd see Appendix C of Otero (2002).
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The c1, . . . , c10 are the unknown coefficients.

3.2. Matching conditions

It remains to specify ten jump conditions to match the solution of Region I to that
of Region II at z = δ:

[θ]δ = [Dθ]δ = 0,

[w]δ = [Dw]δ = [D2w]δ = [D3w]δ = 0,

[q]δ = [Dq]δ = [D2q]δ = [D3q]δ = 0,

 (3.12)

where the jump at z = δ has been denoted by [f ]δ = f2(δ) − f1(δ). The imposition of
these jump conditions is then written in matrix form:

M c = 0, for c = [c1, . . . , c10]
T .

3.3. Vanishing determinant method

For fixed Ra, p and α the equivalent to seeking µα = 0 is finding a δ for which
detM = 0 thus implying the existence of a non-trivial solution to equations (3.5) with
µ =0. The smallest such δ for which det M =0 is δα and thereby the least damped
eigenvalue is zero (µ0

α = 0). Thus equations (3.6) to (3.8) can be rewritten with µ = 0
replaced by detM =0.

The method of solution is best represented by the mini-max problem for the upper
bound:

Nu � min
p∈�

max
α<α+

{N (δα) : δα smallest δ such that det M = 0} (3.13)

For fixed Ra the primary task is to locate δ∗, the global minimum of δα over α

(for which detM and its first derivative with respect to α must both be zero), and
then to follow this extremum by continuation. A secondary minimization over the
interior slope p is performed in a separate loop. Starting at low Ra the extremum
is traced to values sufficiently large that the asymptotic behaviour is clear. One
subtlety is that the explicit Ra-dependence of the matrix entries needs carefully to be
scaled out by suitable row and column operations in order to avoid a serious loss of
accuracy. The more intransigent problem is one of precision: as Ra increases, there
is a crucial cancellation of increasing stringency; this cancellation is the determining
factor in computing δ∗. For Ra ≈ 1020 double-precision arithmetic fails to resolve this
cancellation and multiple-precision numerical techniques are then employed to move
further in Ra.

An attempt was made to extract the limiting exponent from the analytic
determinant, with various levels of truncation of the transcendental functions in
M. An expansion of the trigonometric terms out to (αδ)5 is required to yield the
correct limiting behaviour of the scaling exponent associated to the conservative
bound (see the Appendix for details). Unfortunately, doing this analytically leads to
so complex an algebraic set of manipulations we have not been able to distill from
this the essence of the balance determination. This analytic difficulty is the precise
complement of the numeric one above.

3.4. Consistent numerics

Two auxiliary tests were executed periodically: first, a test to check that the zero
determinant corresponded to a zero crossing of the highest eigenvalue of Q; second,
a test that multiple maxima in the envelope of the maximum eigenvalues of Q over
α were not appearing. Fortunately, neither of these conditions obtained. For each
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z = 1

z = 0

No-slip(a) (b) Free-slip

Figure 4. The form of the optimal test function at low Ra (102 − 103) for (a) no-slip and
(b) free-slip boundary conditions.

boundary condition, we always found a single maximum between α = 0 the cut-off
point α+.

4. Results
For notational brevity optimal parameters will be denoted by superscript *. We

assume a polynomial dependence on Ra for N and α, so N ∗ ∼ Raγ1 and α∗ ∼ Raγ2 .
In the first instance, the exponents γ1 and γ2 are estimated by pointwise evaluation of
d log(·)/d log(Ra). Owing to our choice of b = 2, the test-function bound bifurcates
from the conduction profile at half the critical Rayleigh number Rac/2.

4.1. Low-Ra behaviour

A continuous transition from the conduction profile (τ ′ = −1) to the (δ, p)-test
function solution branch occurs in two possible ways. The two possible behaviours
are pictured in figure 4. Our calculations show that for no-slip boundaries a negative
interior slope leads to the smallest upper bound on Nu, while for free-slip boundaries
the smaller upper bound is obtained with zero slope.

4.2. High-Ra scalings

In extending the test function approach of Otero (2002) to a two-parameter (δ, p)-
family our goal was to bring into correspondence the conservative bound method, for
which the previous best no-slip bound is Ra2/5, with the putative optimal scaling of
Ra1/3 and, in so doing, reveal that particular feature of the background field critical
to establishing the optimal behaviour of the upper-bound exponent.

We conclude that semi-optimal bounds are: for no-slip boundaries an improved
scaling of Ra7/20; and for free-slip boundaries a scaling of Ra5/12. The exponents
in decimal form are respectively 7/20 = 0.35 and 5/12 = 0.416̄. Without an analytic
expansion of the determinant, some uncertainty must, of course, attach to these
values. While the initial estimate of these from a logarithmic derivative suggestis
that the values are converged to perhaps three decimal places, greater confidence can
be had by appeal to extended Richardson extrapolation subject to a determination
of the apparent form of higher correction terms. These appear as a series with
algebraically decaying exponents, i.e. in the form c1R

γ1 + c2R
γ1−ζ + c3R

γ1−2ζ + · · · ·
On numerical evidence, ζ = 1/20 for no-slip and ζ = 1/12 for free-slip. The smallness
of these is consistent with our having to reach Ra = 1035 in the case of no-slip in
order convincingly to show convergence for γ1. Owing to the severity of cancellation
as remarked above, this required up to 96 digits precision. Richardson extrapolation
appears to yield ten significant digits in the determination of c1, and fewer for the
higher coefficients. The results of this fit are shown in figure 5.
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Figure 5. Comparison of the upper bound N∗ for (a) no-slip and (b) free-slip with
asymptotic series fitted to the data. To third order the no-slip fit to the semi-optimal
bound is N∗ ∼ 0.1371355872R7/20 + 0.0416286 R3/10 − 0.096560 R1/4 and the free-slip result
is N∗ ∼ 0.12618619557280R5/12 + 0.050506642R1/3 − 0.0717275 R1/4. The number of decimal
places stated is based on limits on accuracy indicated from Richardson extrapolation.

(a) (b)

5 10 15 20
–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

p*

log10 Ra log10 Ra

p = 0.0213

5 10 15 20
0

0.04

0.08

0.12

0.16

p = 0.103

Figure 6. The optimal p for (a) no-slip and (b) free-slip boundaries. The limiting value for
no-slip is p∗ = 0.0213 and for free-slip p∗ = 0.103. Owing to the slow rate of convergence we
have used Shanks extrapolation to resolve the limiting value of p∗.

The optimal interior gradient is plotted in figure 6. For each boundary condition
the optimal slope p settles, after some transient differences, to a positive value, which
means that the optimal test function retains a small residual positive slope in the
high-Ra limit. The behaviour of the optimal wavenumber is α∗ ∼ Ra1/4 for both
no-slip and free-slip boundaries.

5. Conclusions
The original conservative Howard bound for finite Prandtl number Doering &

Constantin (1996), which uses piecewise linear profiles with an interior slope of +1,
and a standard constant-slope boundary layer, takes the form of Nu � cRa1/2. This
bound holds for either no-slip or free-slip boundary conditions, and applies uniformly
in Prandtl number. Thus the limiting exponents calculated here are constrained to be
less than 1/2.
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The simplest class of test functions (pictured on figure 2a) was previously applied
to the problem of infinite-Prandtl-number convection. The best analytic result for
no-slip boundary conditions was found to be Ra2/5 (Doering & Constantin 2001)†
and was corroborated by Otero (2002) using numerical implementation of the spectral
constraint, by means of the determinant method, as in § 3 of this article.

We have presented compelling evidence that a semi-optimal analysis of the CDH
variational problem for infinite-Prandtl-number convection results in (i) Nu � cRa7/20

for no-slip boundaries and (ii) Nu � cRa5/12 for free-slip boundaries. It is our
hypothesis that the exponents in these two problems take the simple rational values
indicated, the only evidence for which to emerge thus far is numerical.

We note, again, that multiple-precision arithmetic is required before a limiting
behaviour for the free-slip case is observed for Ra ∼ 1030. The no-slip calculation
is yet more delicate, requiring 96 (versus 32) digits to reach the needed degree of
convergence in the exponent, and achieving this only for Ra ∼ 1035. This numerical
delicacy arises from exquisite cancellation of intermediate operands. There is an
analogous difficulty one encounters in attempting to derive the scaling exponents
from an analytic expansion of the determinant, shown by the need to carry the
relevant series to high order in δ as discussed in the Appendix. Unfortunately, the
ensuing determinant appears virtually intractable to deal with owing to the factorial
profusion of terms. Though expressed in one instance numerically, and the other
analytically, clearly these difficulties derive from a common cause.

These results cast light onto the non-standard nature of this variational problem
in contrast to equivalent applications to Couette flow or finite-Prandtl-number
convection (see for example Doering & Constantin 1994, 1996). In the latter problems
the simple asymptotic scaling of the optimal solution is easily attained by semi-optimal
estimates using piecewise linear background fields with a fixed slope in the channel
interior, for example, the profile depicted in figure 2(a) – (see Busse 1970; Doering
& Constantin 1994). Functional estimates of sign-indefinite terms in the spectral
constraint enable easy calculation of semi-optimal upper bounds analytically. Here,
however, we find an embarrassing gap between the estimates achieved using simple
test functions, in conjunction with functional inequalities or numerical implementation
of the spectral constraint, and the putative optimal scaling of Ra1/3 reported in the
Chan (1971) multi-α boundary layer solution following Busse’s Couette flow solution.

To support the assumption that this variational problem is non-standard and that
more complex test functions must be brought to bear, we present in figure 7 a
comparison of the mean temperature field (T ) for free-slip boundaries, taken from
three-dimensional direct numerical simulations (DNS) presented in Sotin & Labross
(1999), with optimal fields presented in Part 2. The DNS and optimal profiles are in
very good qualitative agreement; significantly both have an inversion in the sign of
the gradient within the thermal boundary layer. However, the optimal mean has a
non-zero interior gradient. The localized overshoot in the boundary layer region does
not appear in the optimal solution of the arbitrary-Prandtl-number CDH problem
and we therefore speculate that this is one key feature which prevents both the
one-parameter and the two-parameter test functions described here from attaining
the optimal scaling.

† This result uses only functional analytic inequalities to bound the quadratic functional, however,
Constantin & Doering (1999) deduce a logarithmic upper bound of the form Ra1/3(log Ra)2/3 using
extra PDE information not contained in the standard CDH problem.
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Figure 7. Comparison plot of the mean temperature profile for free-slip boundaries at
Ra = 107. The dot-dashed curve depicts data taken from a three-dimensional DNS of the
governing equations generously provided by S. Labrosse.

In this paper we have explored the effect of adding more structure to the test
functions. We find that the (δ, p)-family also fails to saturate the optimal scaling
presented by Chan, and therefore we can neither support, nor refute, the Chan
analysis of the optimal solution. The subtlety of the variational solution is such that
a simple test function may never saturate the optimal asymptotic scaling. For this
reason, in Part 2, we explore the full optimal solution of equations (2.18)–(2.21) with a
mixture of numerical and analytic means in order to assess both boundary conditions.
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Appendix
Symbolic expansion of the exact 10 × 10 determinant is well beyond the range of

computation. A natural response is to use an approximate form for the matrix, but
even this has so far proved intractable on the basis of two plausible approaches. First,
consider that we seek only to confirm a specific scaling hypothesis. Taking the case
of no–slip, for example, we propose on the basis of numerical experiment that

α ∼ α0 Ra1/4, δ ∼ δ0 Ra−7/20, p∗ ∼ p0.
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Figure 8. Comparison of the numerical exponent µ2 = d log (Nu)/d log(Ra) of the conser-
vative bound on Nu for the no-slip problem (solid line) with a three-term expansion of
hyperbolic functions of small argument in M, that is expansion out to ([1, βi]αδ)5 order, and
a two-term expansion out to ([1, βi]αδ)3.

These already yield the desired answer, Nu ∼ c Ra7/20, and the problem reduces
to one of showing that vanishing of the determinant suffices to fix the unknown
constants [α0, δ0, p0], the needed relations for which should follow from application
of the fundamental theorem of algebra to the first three terms in Ra appearing in the
expansion of the determinant. While simple in principle, in practice expansion of just
the intermediate factors which compose the matrix entries already introduces terms
of order Raµ with µ taking values of

[1/4, 7/30, 7/60, 7/120, −1/24, −1/12, −1/5, −1/3].

If individual matrix entries are then each expanded to leading order only – which leads
to a profusion of 25 distinct exponents – the resulting determinant vanishes identically,
hence even the first non-trivial relation of the three required arises from products
of cross-terms in higher order expansions (symptomatic of the extreme numerical
cancellation we observed). Carrying all the needed intermediate expressions in terms
of the three unknowns is certainly possible but the resulting calculation – amounting
to a proof that 7/20 is a consistent scaling – almost certainly can have no useful
insight to convey apart from the bare fact that it can be done.

While it will be apparent that a more basic starting point, where even the exponents
governing [α, δ, p∗] are to be regarded as unknowns, can serve no constructive
purpose, we can nonetheless explore a comparably general expansion in purely
a numerical setting and see complementary, and more complete, evidence of the
cancellations involved. For this purpose, we turn to approximation of the hyperbolic
and trigonometric terms, whose arguments are α δ and βi α δ, assuming only that
these products tends to zero.

The result of such an exercise reveals that determination of the saturated limit of
the no-slip exponent, namely 7/20, is contingent on the number of terms kept in
these expansions, in support of which we refer the reader to figure 8. The vertical axis
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is the local exponent estimate, µ2 = d log Nu/d log R (notation in keeping with that
employed in Part 2). We contrast µ2(Ra) for the no-slip conservative bound based
on the exact hyperbolic functions with the values of µ2 calculated using two or three
non-zero terms in the transcendental approximations, i.e. (ignoring prefactors) to
orders δ3 and δ5 respectively. It is manifestly clear that the three-term approximation
and the exact form share a common limit of 7/20, while the two-term approximation
singles out a different limit. Once again, the implied algebraic burden in approaching
the determinant analytically appears disproportionate to the marginal gain in search
of rigour.
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